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Abstract. It is shown, by means of an example, how multiple faults in bipolar analogue
integrated circuits can be diagnosed, and their resistances determined, from the magnitudes
of the Fourier harmonics in the spectrum of the circuit responses to a sinusoidal input test
signal using a two-stage multilayer perceptron (MLP) artificial neural network arrangement
to classify the responses to the corresponding fault, A sensitivity analysis is performed to
identify those harmonic amplitudes which are most sensitive to the faults, and also to which
faults the functioning of the CUT is most sensitive. The experimental and simulation
procedures are described. The procedures adopted for data pre-processing and for training
the MLPs are given. One hundred percent diagnostic accuracy was achieved, and most
resistances were determined with tolerable accuracy.

L Introduction

Various methods [1- 4] have been developed for analogue circuit testing. However, they
typically require too many test points and need extensive complicated computation. For these
reasons they have not gained widespread acceptance in production. The increased size and
complexity of modern circuits has meant that the "bed of nails" test technique has become
impractical because too many external test points are needed. This has led to the introduction
of alternative built-in self-test (BIST) structures for analogue circuits [5, 6, 7].

A more recent approach has been to apply the pattern recognition capabilities of artificial
neural networks (ANNs) to diagnose faults by associating patterns in the test response data
with the corresponding faults. Rutkowski [8] used a neural network to achieve the diagnosis
by recognising patterns in the measured nodal voltages. Meador et al. [9] showed that
feedforward neural networks provided a cost efficient method for the diagnosis of open and
short circuit (hard) faults in IC operational amplifiers in a production environment. The
network was used to recognise patterns in the time and frequency domain responses of fault-
free and defective circuits. It offered an order of magnitude improvement in diagnostic speed
while consistently performing as well as or better than other classifiers in terms of accuracy.
The method reported here uses fewer test points than in [8] and in contrast to [9] is extended
to soft faults. Spina and Upadhyaya [10] performed signature analysis using ANNs to
recognise the fault-free and faulty responses of a common emitter amplifier to input white
noise. A classification ambiguity for two of the faults remained unresolved. Ambiguities are
resolved in the work reported here.

Supply current monitoring has been investigated in simulations for testing analogue and mixed
signal circuits [11, 12]. In both cases the tests were go/no go tests of single faults. One
hundred percent diagnosis of a single gate oxide short (GOS) fault in a MOSFET transistor of
an operational amplifier has been achieved in simulation by associating the patterns of the
supoly current responses to test signals at the input with the simulated fault using artificial



neural networks [13, 14]. It was further shown [14] that with varying degrees of accuracy it
was possible to estimate the resistance of the short circuit and its location between the source
and drain.

In another method the faults in a circuit have been diagnosed from the signature of the
spectrum of its response to a sinusoidal input signal [15, 16].

In this paper a combination of the above method of using an ANN to diagnose GOS faults
from the signature of the supply current response of the circuit with the method of signature
analysis of the response spectrum is described for the diagnosis of multiple faults in an
analogue bipolar transistor circuit. The diagnosis was based upon the signature formed from
selected harmonic components of the spectrum of the output response of the circuit to an
input stimulus. This has been achieved both in simulations and experimentally. Diagnosis was
performed in the frequency domain because of the ready availability of spectrum analysers for
circuit testing.

Faults in resistors, capacitors, diodes, and transistors are usual in bipolar circuits [12] and so
the diagnosis of this type of fault was investigated in this work. Typically, the base-emitter,
collector-emitter, and base-collector resistances are modified. Electrical overstress and
electrostatic effects can reduce the resistances, while bulk and interface failure mechanisms
can either increase or decrease them [12].

II. Approach

Multilayer perceptron (MLP) artificial neural networks (ANNs) [17 ] were used in this work
because their outputs may represent the class associated with an input data vector and are also
quantitatively mappable to associated parameter values. In the present context the input vector
consists of the magnitudes of the Fourier harmonics of the response waveforms owing to the
input stimulus, and the class represents the type of circuit fault, while the outputs map to the
resistance values of the faults. The networks were trained using the back-propagation (BP)
algorithm [18]. The largest MLP contained 21 nodes, and required a total of 123 weight and
threshold values. For each fault 1239 values of resistance were used in the simulations for
network training and a further 958 for testing. These were sufficient to ensure that the MLPs
generalised and were not overtrained to a particular type of input vector.

The circuit under test (CUT) was a differential amplifier (Figure 1) with current mirror,
included in an ASIC (BiCMOS Semicustom Array from Integrated Associates Incorporated
company), and was chosen as a simple example for testing the feasibility of the developed
methods [15, 16].

A sinusoidal signal was applied to the input of the circuit under test and the spectral response
of the entire circuit was measured when the circuit was in a steady state. Because of the
symmetrical properties of the circuit, the spectral response of the circuit without faults nearly
always contained odd harmonics.

To illustrate this method, the intrinsic resistance values re and rb in the Hspice model were
varied. In effect, these intrinsic resistances can be increased by adding an external resistor (rg,,



re: and rg, Figure 1). The type of simulated fault corresponds to the technological problems of
dopage of the extrinsic zones or an open contact problem before metallisation.

The sensitivity of fault diagnosis by harmonic analysis was proved by computing the sensitivity

factors:
s .o AH; /A%
L) H; Xj

where S is the Sensitivity Factor, H; = amplitude of the i harmonic, and x; = value of the
parameter.

The influence of the betal parameter on the magnitude of the Sensitivity Factor S is shown in
Figure 2 for a one fault circuit. It shows that this factor is largest for the even harmonics, but
even these have a very low magnitude for this type of circuit.
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It was verified by simulation with good precision that the values obtained by modifying the
parameters re and rb of the Hspice transistor model and the values obtained by modification
of the external resistances (rps, rg1 and rgz) added to the nominal Hspice model were similar.
The similarity between the practical measurements and Hspice simulations was also verified.

For the construction of the fault dictionary, the CUT was simulated using Hspice software.
The chosen resistances which represented faults were varied. The value of the DC component,
the amplitudes of the harmonics H; to H; (taken from the file *.lis), and the corresponding
values of the faults (here gz, re; and rg;) were recorded. The maximum and minimum values
of the faults were carefully chosen. In effect the fault dictionary technique implies that only the
faults within this range can be detected. The detection of catastrophic faults like short and
open circuits is not possible if they are not present in the dictionary (as in this case).

The simulated raw data was obtained from the * lis file created by the Hspice software. The
measurements were made using the test setup shown in Figure 3 which automatically records
the values of the different harmonics and the DC values.

III. Data Pre-processing

The training data vectors were assessed as to their suitability for the training of the MLPs. The
data vector elements were the magnitudes of the DC term and of the first three harmonics of
the FFT of the output voltage response waveform. The magnitudes of harmonics 2 and 4 were
considerably smaller than those of the DC component and of the first harmonic, as seen in
Figure 4a . In order to reduce the disparities in the values of the training and test vector
elements and of the weights, and for the purpose of visual inspection, the values of harmonics
2 and 3 were multiplied by 10, Figure 4b . Subsequently for the purpose of training the MLPs
the resulting harmonic magnitudes were scaled so that all values lay between 0 and 1.0. The
latter was achieved by normalising all values to the highest. By reducing the disparities, the
MLP was more rapidly trainable.

The plots of harmonic magnitude versus harmonic number, including the DC term, with fault
resistance as parameter, were inspected next for each fault. See Figures 5a, 5b, and 5c
respectively. Note that in the figures the solid line represents the fault-free case. The presence
of faults ras, re; and rgx were indicated in a binary format such that, for example, (101)



indicated (ra; faulty, rg; fault-free, rg; faulty). The plots of magnitude versus harmonic number
for fault type (001) subdivided into two characteristic sets of curves, (001), and (001),
respectively. These plots are shown in Figures 5a, 6a, and 6b respectively). Similarly, the
(010) and the (100) faults subdivided into (010),, (010), and (100),, (100), characteristic
curves. Of these, the (100),, (010), and (100), curves were very similar, suggesting that it
might be difficult to distinguish between the different types of fault using MLPs, ie
classification ambiguities might occur.

The following strategy was adopted to minimise the number of ambiguous classifications of
fault-type. If the outputs (i, j, k) of the MLP were approximately zeros or ones then the
classification was unambiguous. However, if the output values i, j, k were intermediate
between approximately O and approximately 1, then the classification was considered
ambiguous. To overcome this a program called "TABLE" was written. For each output the
threshold value above which the output could be considered a 1, and below which it was to be
considered a 0 was adjustable. Having first trained the MLP, test vectors were applied and the
thresholds set in TABLE varied. The program then set the outputs to 1 or 0 according to the
threshold value. A table of the number of ambiguous decisions for the test data at each
threshold level was then produced by TABLE. The threshold values which minimised the
number of ambiguities were thus determined. These threshold values were then used in a
second program called ROUND, which simply converted all the test outputs of the MLP to
ones or zeros to indicate the class, ie the fault type.

Another program, SHUFFLE, was written and used to randomise the order of presentation of
the training data to the MLP in order to avoid biasing of the network parameters which can
occur when the data is presented in the same order at each iteration of the training data set.

IV. Experimental measurement procedure

Measurements were made using an experimental setup composed of a function generator
(HP3325A), a spectrum analyser (HP3588A), a DC multimeter (HP3458A), and the circuit
under test, all of them managed by a PC via the IEEE488 Data Bus (Figure 3). The PC was
linked to a Sun workstation by an Ethernet network to allow bidirectional transfer of
information between the PC and the Sun. The function generator was programmed to deliver
the same signal as used in the Hspice simulations. The spectrum analyser and multimeter sent
the DC values and the harmonic amplitudes to the computer for storage in a results file. The
PC was used to take the measurements. The Sun workstation was used to perform the Hspice
simulation, build the dictionary, and to train and validate the MLPs using SNNS (Stuttgart
Neural Network Simulator). Then the PC was used to make a statistical analysis of the values
of the resistances given by the MLPs.

The values of the fault choice for rg; were [1Q, 1kQ, 2.2kQ2, 3.3kQ2 and 5.6kQ2 ] and for rg;
or rgz, they were [1Q, 27Q, 82Q, 150Q and 330Q2]. For these 3 resistors 5 values per fault
were used. Thus, 5° = 125 measurements were made to an accuracy of 1mV. The circuit was
designed for easy access to the resistors rg;, re; and rg, thus allowing rapid manual
modification.

Thermal errors were avoided by placing the CUT in a thermally stable environment. For
example, a variation in temperature of 1°C causes a change of 0.5mV in the DC value and of



10mV in the first harmonic. Therefore all measurements were taken at a fixed temperature of
25°C.
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V. Simulation procedure

The data was obtained from the Hspice software simulations. The CUT was stimulated by a
sinusoidal signal of 50mV, at 1kHz. The simulations were performed for the same temperature
as the measurement chamber temperature (.temp 25). The data simulated or measured was
normalised before being transferred and used in the MLPs.

Catastrophic faults like short circuits or open circuits were not investigated. The resistors rg;
and rg,, were varied from 0Q, corresponding to a fault free circuit for which the intrinsic
resistance values are equal to the nominal Hspice model, to 380Q2. Resistor rg; was varied
from 0Q to 10kQ. Thirteen values per fault-were chosen, giving a dictionary containing 2197
patterns {(number of values)®™mber of ful) = 133} The intermediate values were spaced
approximately linearly between the two extremes (depending upon the values of the standard
resistors).

The similarity between the values obtained by measurement and the values obtained by
simulation was verified.

VI MLP procedures

It was necessary to both train the MLPs and to optimise their architectures in order to effect
the diagnosis. There were four inputs to the MLPs which corresponded to the dc and first
three harmonic magnitudes of the FFT components of the spectrum of the output voltage. In
each case there was only one output (see below). The optimisation was achieved for each
network used by experimenting with different numbers of nodes in the two hidden layers. The
architectures which resulted in acceptably small training errors, the clearest indications of
fault-type (given by the values of the output nodes), and the least number of nodes were
adopted. Some of the MLPs were subsequently reduced in size by eliminating those nodes
which made disproportionately small contributions to the output. These were identifiable since
the commercial MLP program used gave an indication of the relative use of the nodes. The
training of the network was also assessed in terms of accuracy of classification of the test data.
Further training or modifications were undertaken if the testing accuracy was inadequate.
Sigmoidal transfer functions were implemented for the hidden layers and output nodes.

Considerable effort was spent in determing an MLP arrangement which would allow the
diagnosis of both the type and the resistance of multiple faults in the circuit. The solution was
to use a primary layer of three MLPs, each trained to detect one of the three fault types
investigated, with a secondary layer of three MLPs to indicate the values of the resistances of
the corresponding detected faults. In this way the presence of any combination of one, two, ot
three faults could be detected and their resistance values obtained. The inputs to the MLPs
were the pre-processed magnitudes of the components of the spectrum as described above.
This system is shown in Figure 7.

An input vector was first created for the fault-free case in which the resistances had their
nominal values of rb; = 14 Q, re; = 0.3mQ, and re; = 0.1mQ. Then a training vector set of
1239 examples and a test vector set of 958 examples was created for each fault type by



generating further examples by systematically increasing the resistances of first each fault in
turn, and then repeating for multiple faults. In this way all possible combinations of one, two,
or three faults were simulated. The range of resistors was from 0 to 10kQ for rm2
(corresponding to a variation of rb, from its nominal value (14Q2) to 10kQ2), from 0 to 380Q
for rg, and rg2 (corresponding respectively to a variation of re; and re, from the nominal value
to 380Q). The three fauli-detection networks were trained as described above to detect
whether a fault had occurred, while the three fault valuation networks were trained to give an
output which represented the resistances of the indicated faults. In the test mode the faults
present were thus indicated and their resistance values given.

VII. Evaluation procedure

In order to evaluate the accuracy achieved by the fault valuation networks, the MLP output
data were loaded into a spreadsheet package, then converted to ohms by multiplying by the
appropriate factor. The differences between the predicted resistances and the known values
were calculated. For each fault type these differences were grouped according to the size of
the errors, and the percentage of faults within a number of different error ranges was
determined, see Table 1.

VIII. Results

One hundred per cent diagnostic accuracy was achieved for identifying the fault type using the
test data. Some no-fault examples were missed by the fault-detection MLP, but were identified
by the low resistance values at the fault valuation MLP. Table 1 shows the errors obtained in
determining the values of the different fault resistances. From this table it is seen that over
50% of the fault resistance values were found to be within 1Q of the known value. In the case
of the (001), or rb, fault, 30.6% of the values are in error by >1kQ. This seems a
disappointingly bad result. However, this was found to correspond to the error in the largest
resistance values, and therefore only represented a smaller percentage resistance error. This
finding was generally true, ie the largest errors occurred for the larger resistances and
represented relatively small percentage errors. Furthermore the results for each fault reflect the
different amounts of training to which each fault valuation network was subjected.

IX. Discussion

It has been demonstrated by experiment and simulation that the magnitudes of harmonics 0 to
3 of the Fourier spectrum of the response of the analogue CUT to a sinusoidal test input
signal may be used both to diagnose and also to quantify the possible three multiple faults with
the highest sensitivities which can occur. This was achieved using a two-stage MLP
arrangement, in which each of the three MLPs in the primary layer were used to detect the
presence of the fault-type upon which it was trained, and the three MLPs in the secondary
layer yielded the corresponding values of the fault resistance. Since the MLP output error is
known for each resistance value used for each fault, it is possible to convert the MLP output
values to the precise resistance values. This will yield 100% resistance value accuracy. This
method is thought to be extendable to the diagnosis of multiple faults in other circuits. Besides
serving as a test for faults, the method will be useful in quality control, since the faults are
‘both diagnosed and quantified. This will assist the production engineer to identify production
process errors. In order to achieve good experimental results care has to be taken to both
stabilise the temperature of the CUT and of the active probe and to ensure the measurement



equipment is calibrated. The method is appropriate when a spectrum analyser is available as
part of the test equipment. This may not always be the case, and so in future work the
application of the method in the time domain to the output voltage and with alternative test
signals will be investigated. It is possible that a simpler MLP structure could be found to effect
the diagnosis and quantification of faults in the time domain. This is because there may be
more useful information available in the voltage waveform than there is in the magnitude
spectrum.

X. Conclusions

Multiple faults in bipolar analogue integrated circuits can be diagnosed, and their resistances
determined, from the magnitudes of the Fourier harmonics in the spectrum of the circuit
responses to a sinusoidal input test signal using a two-stage multilayer perceptron artificial
neural network arrangement to classify the responses to the corresponding fault. This
technique has applications to the process control of such circuits, as well as for test.
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Figure Captions

Figure 1 : Circuit Under Test.
Figure 2 : Sensitivity vs. Betal.
Figure 3 : Experimental Test Setup.

Figure 4a :
Figure 4b :
Figure 5a:
Figure 5b :
Figure Sc:
Figure 6a :
Figure 6b :

Harmonic magnitudes of the fault-free circui
Harmonic magnitudes after treatment.
Harmonic magnitudes relating the fault rg,.
Harmonic magnitudes relating the fault rg;.
Harmonic magnitudes relating the fault rg,.
First part of the figure Sa.

Second part of the figure Sa.

Figure 7 : Organisation of the MLPs.

Table 1. Errors in determining the fault resistance values.

Based on 1239 training vectors per fault type.

Fault type Resistance range (Q) Error range (Q) % Faults
(001), b, 0-10k +1 53.3
2-10 0
10-100 1.3
100-500 4.8
500-1k 9.9
>lk 30.6
(010), re; 0-280 +1 78.2
2-5 5.08
5-10 3.31
10-20 3.31
i 20-30 6.78
>30 3.31
(100), re; 0-280 *1 65.7
2-5 5.81
5-10 10.65
10-20 10.0
20-30 4.12
>30 3.71




